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Shallow-water impact problems
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Abstract. Impact by a box-like structure onto shallow water is analysed with the help of asymptotic methods. The
analysis is based on both the asymptotic approach by Korobkin [1], which was derived originally for blunt-body
impact, and the experimental results by Bukreev [2]. The flow region is divided into six parts: the region beneath
the entering body, the region close to the bottom edge, the region of inertial flow of the liquid, the jet root, the
splash jet and outer region. The flows inside each of the subdomains have their own peculiarities and are analysed
separately. The matching conditions make it possible to obtain a uniformly valid asymptotic solution of the impact
problem. The main attention is paid to the flow patterns and pressure distributions. It was found that the pressure
inside the jet root can be comparable with the pressure beneath the entering body and can even exceed it. The
effects of the shape of the body bottom and of the body flexibility on the liquid flow and the pressure distribution
are investigated.
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1. Introduction

The study of impact onto shallow water is often motivated by its application to the problem of
tsunami generation. Under the impact a part of the liquid is piled up and may form a tsunami
thereafter due to gravity. In a similar manner as for tsunami generated by an earthquake, the
process can be divided into two parts: at the initial stage (impact stage), the duration of which
is relatively short, gravity can be neglected and deformation of the liquid domain is mainly
due to the body entry; at the second stage (gravity stage) the liquid flow is determined by the
gravity, which acts to restore the elevated portion of the liquid, with a possible formation of a
solitary wave. Parameters of the solitary wave can be approximately determined if the shape
of the liquid elevation at the beginning of the gravity stage is known.

The main focus of the present study is the impact stage, but the pattern of the flow gen-
erated by impact can give helpful ideas about a portion of the body energy, which is adopted
by tsunami. In particular, it was revealed by Korobkin [1] and confirmed experimentally by
Bukreev [2] that blunt-body impact does not lead to soliton formation: most of the liquid
displaced by the entering body leaves the liquid layer as a spray jet. The jet is strong: its
thickness is comparable with the initial depth of the liquid. This effect can be explained as
follow: the possibility of the liquid free surface to move up is restricted by the surface of
the entering body; this causes the liquid particles to change the directions of their motion
and to leave the main volume tangentially to the entering surface. One may expect that under
the impact by a box-like structure, which does not provide any restriction to the free surface
elevation, the spray jet is not strong and a solitary wave can be generated.

A sketch of the flow in the plane case is shown in Figure 1. Initially the liquid is at rest and
occupies a region−h < z < 0. The bottom of a box-like structure touches the liquid over the
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234 Alexander Korobkin

Figure 1. Impact of a box-like structure on a thin liquid layer. The flow pattern: the roots of the splash jets move
from the body and the jets are inclined towards the body. Initially, the liquid is at rest and occupies the strip
−h < z < 0, and the body touches the liquid surface over the interval−L < x < L. The initial position of the
liquid surface is shown by the broken line.

Figure 2. The liquid flow just after the impact: RSW, the shock wave reflected from the bottom. Fronts of relief
waves, which come from the free surface, are almost circular. Outflow of the liquid from beneath the body is still
not developed.

interval−L 6 x 6 L, z = 0. The origin of the Cartesian coordinate systemOxz is taken at
the centre point of the interval. At some instant of time, taken as the initial one(t = 0), the
body begins to penetrate the liquid layer, the initial impact velocity beingV0. The position of
the body bottom at an instantt is given byz = −s(t), wheres(t) is the penetration depth and
s′(0) = V0. A prime stands for the time derivative.

We shall determine the liquid flow, its boundary geometry and the pressure distribution up
to the momentT of the body contact with the bottom under the following assumptions:

(i) the liquid is ideal and weakly compressible;
(ii) the structure is undeformable;

(iii) the liquid flow is plane, symmetrical with respect to thez-axis and irrotational;
(iv) external mass forces and surface tension are absent;
(v) the thicknessh of the liquid layer is much smaller than the dimension of the body bottom

L;
(vi) the Mach numberM = V0/c0, wherec0 is the sound velocity in the resting liquid, is

small;
(vii) the liquid depthh is much greater thanML.

The impact of a box-like structure onto a liquid layer may be divided into the following
stages.

(i) At the first stage (see Figure 2), the duration of which is of the orderO(h/c0), com-
pressibility effects are of major importance. Outflow of the liquid from beneath the body is
not developed. The pressure beneath the body grows in time. The horizontal component of the
liquid velocity only differs from zero close to the edges of the body bottom. The dimension of
the edge vicinity is ofO(h). The flow inside the vicinity is two-dimensional. The spray jet is
formed just after the moment of impact. Its distance from the edge is ofO(h).

(ii) At the second stage (see Figure 3), the duration of which is of the orderO(L/c0), the
outflow from beneath the entering body will develop. The pressure beneath the body starts
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Figure 3. The liquid flow at the second stage. The liquid outflow from beneath the body is under development,
and the splash jet is under formation. The spray jet still exists but does not give an important contribution to the
flow: sJ, the spray jet; SJ, the splash jet; DF, disturbance fronts; RW, relief wave. The figure corresponds to an
instant of time when the horizontal velocity of the liquid is zero near the centre line,x = 0.

to drop owing to relief waves coming from the free surface. Assumption (vii) provides the
estimateV0L/(hc0) � 1, which means that we can neglect the body displacement during
this stage. At the end of this stage acoustic effects can be disregarded and the flow is almost
incompressible and linear. The splash jet is formed owing to the liquid outflow from beneath
the body, the root of the jet is near the edges of the body bottom. The spray jet is still visible
at the end of the splash jet but it does not give a significant contribution to the main flow.

(iii) At the third stage, the duration of which is of the orderO(h/V0), the outflow of liquid
from beneath the body has already developed, the flow is unsteady and nonlinear. The body
displacement is comparable with the liquid layer thickness. Hydrodynamic loads on the body
are growing again owing to the decrease of the gap between the body and the bottom. The
root of the splash jet moves from the body, its speed is determined by the outflow velocity.
Between the body and the jet root, the region of inertial liquid flow appears. This is the stage
which is being considered in the present paper. It is clear that the durations of both the first
and second stages are much smaller than the duration of the third stage.

The plane problem on the penetration of a box-like structure at a given velocity is analysed
first in Sections 3–7. The effect of the body flexibility and three-dimensional effects are
studied in Sections 8 and 9, respectively.

2. Formulation of the problem

The entry of a box-like structure into a layer of ideal and weakly compressible liquid is
considered (see Figure 1). The structure is rigid and the flow is plane and irrotational. At
the initial instant of time(t = 0), the body touches the liquid boundary over the interval
−L < x < L, z = 0, the centre point of the interval is taken as the origin of the Cartesian
coordinate systemOxz. The liquid initially is at rest and occupies the strip−h < z < 0.
The linez = 0 corresponds to the undisturbed position of the liquid boundary. The part of the
boundary−L < x < L, z = 0 corresponds to the contact region of the structure bottom with
the liquid, and the partsx < −L andx > L correspond to the free surface where the pressure
is zero at all times. The linez = −h corresponds to the rigid bottom of the liquid. Next the
body starts to penetrate the liquid layer at an initial impact velocityV0. The position of the
body bottom is given by the equationz = −s(t), wheres(t) is the depth of penetration. It
is necessary to determine the liquid flow and the pressure distribution under the assumptions
(i)–(vii) of the previous section.

The liquid motion is governed by the Euler equations

∂u

∂t
+ u∂u

∂x
+ v ∂u

∂z
= −1

ρ

∂p

∂x
, (1)
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∂v

∂t
+ u∂v

∂x
+ v ∂v

∂z
= −1

ρ

∂p

∂z
− g (2)

with respect to the velocity vector of liquid particlesu(x, z, t) = (u, v), the pressurep(x, z, t)
and the liquid densityρ(x, z, t), whereρ(x, z,0) = ρ0, andg is the acceleration due to
gravity. The equation of continuity for a compressible liquid is

∂ρ

∂t
+ ∂

∂x
(ρu)+ ∂

∂z
(ρv) = 0. (3)

The equation of state is taken in the Tate form and can be written as (see [3])

ρ = ρ0(1+ np/ρ0c
2)1/n. (4)

(wheren = 7·14 for water). The liquid flow is assumed irrotational, therefore, the equation

∂u

∂z
= ∂v

∂x
(5)

has to be satisfied. Letz = η(x, t) describe the position of the free surface. On the free surface,
position of which is unknown in advance, the kinematic condition

∂η

∂t
+ u∂η

∂x
= v (6)

and the dynamic condition

p = 0 (7)

hold. On the bottom of the entering structure, the normal component of the velocity of the
body and that of the liquid particles are equal:

v = −s′(t) (z = −s(t), | x |< L). (8)

On the bottom,z = −h, the vertical component of the liquid velocityv(x,−h, t) is zero

v = 0 (z = −h,−∞ < x < +∞). (9)

The initial conditions are

u = 0, p = 0, ρ = ρ0, s = 0, s′ = V0, η(x,0) = 0 (t = 0). (10)

For a weakly compressible liquid the Mach numberM = V0/c0 is much less than unity
and the durations of both the first and second stages (acoustic stages) are much smaller than
the duration of the third stage, at which the depth of the body penetration is comparable with
the thickness of the liquid layer. At the third stage the liquid can be treated approximately as
incompressible with constant densityρ0. Equation (3) gives

∂u

∂x
+ ∂v
∂z
= 0, (11)
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Figure 4. Sketch of the liquid flow (spray jets, which are attached to the tops of the splash jets, are not shown): I,
the region beneath the entering body; II, the region close to the body bottom edge; III, the region of inertial flow;
IV, the jet root; V, the splash jet; VI, the outer region.

the equation of state (4) can be omitted and the initial conditions (10) have to be replaced
by matching conditions of the solution at the third stage with the solution at the second stage.
Other equations and conditions do not change their forms. There is a small parameterε = h/L
in the problem (1)–(10). We shall determine an approximate solution of the problem (1)–(10)
at the third stage, which is uniformly valid asε→ 0 up to the moment of contact between the
entering body and the bottom.

In order to construct an approximate solution at the third stage, the method of matched
asymptotic expansions is used. In accordance with this method the flow is divided into the six
regions shown in Figure 4: I, the region beneath the entering body; II, the region close to the
bottom edges; III, the region of inertial flow; IV, the jet root; V, the splash jet; VI, the outer
region.

In region I, the orders of the independent variables and the unknown functions are as
follows: x = O(L), z = O(h), t = O(h/V0), v = O(V0), (11) gives thatu = O(V0L/h),
(1) givesp = O(ρ0V

2
0 ε
−2), (4) givesρ = ρ0(1+ O(M2ε−2)) whereM2ε−2 � 1 according

to assumption (vii) and (5) gives∂u/∂z = O(V0/L). The termv∂u/∂z in (1) is much smaller
than other terms in the equation, and it may be omitted at leading order asε → 0 with
relative accuracy ofO(ε2). Accordingly, all terms in (2) are much smaller than the term
(1/ρ)(∂p/∂z). This means that in this region∂p/∂z = O(ε2[1+ gh/V 2

0 ]) and∂p/∂z = 0 to
leading order. The terms with derivatives of the density in (3) are smaller than terms∂u/∂x

and∂v/∂z, and they may be omitted at leading order asMε−1 → 0. This means that the
acoustic effects can be neglected with accuracy up toO(M2ε−2), and Equation (3) can be
replaced approximately by (11), which is the equation of continuity for an incompressible
liquid. Equation (5) gives at leading order∂u/∂z = 0. These estimates make it possible to
consider the liquid as incompressible and both the pressurep and the horizontal component
of the velocityu as approximatelyz-independent. Equations (8) and (9) do not change their
forms asε→ 0.

The flow between two plates, one of which is at rest and another one falling vertically onto
it, was studied by Yih [4]. The author was concerned with the infrequency of breakage of glass
plates colliding in this way. It was revealed that the presence of air is of major importance at
the end of the fall, where the distance between the plates is small.

In region II, the order of the horizontal coordinatex isO(h) but the orders of other vari-
ables are the same as in region I. This implies that the flow in this region is quasi-stationary
at leading order, and the pressure is zero. The thickness of the liquid layer decreases in time
and is equal toh − s(t). The velocity of the liquid particles in the vertical direction,v can
be neglected compared with their horizontal velocityu. This fact follows from the condition
of matching the solutions in regions I and II. Equation (9) gives that the horizontal velocityu

does not depend onx at leading order.
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In region III, the orders of the variables are the same as in region I. The pressure is zero
at leading order as it follows from the dynamic boundary condition (7). Therefore, the liquid
particles move inertially. The flow is nonstationary and approximately one-dimensional. It de-
pends mainly on the outflow velocity and the thickness of region I,h−s(t), which provide the
boundary conditions atx = ±L. Deformation of the free surface is ofO(h). The horizontal
dimension of the region can be estimated as the product of the horizontal velocity scaleV0L/h

and the timescaleh/V0, which isL.
The peculiarity of the problem considered is that the flow scheme has to be presented in ad-

vance in a way which allow us to construct the approximate and uniformly valid solution. This
is possible if the flow in the region IV is essentially two-dimensional. This region, dimension
of which is ofO(h), moves away from the body at a velocityc′(t), which has to be determined
together with the liquid flow. The prime stands for the time derivative. The internal variables
x1, z1 are introduced in this region,x = c(t) + x1, z = z1, wherex1 = O(h), z1 = O(h). In
order to match the horizontal velocities in regions III and IV, we takeu = O(V0L/h). The
equation of continuity (3) gives that the vertical velocity in the region is of the same order,
v = O(V0L/h). The time and the pressure are of the same orders as in region I. The unknown
function c(t) is of the order of the dimension of region III, that givesc(t) = O(L) and
c′(t) = O(V0L/h). This means that region IV propagates at a velocity which is comparable
with the velocity of the liquid outflow from beneath the entering body. The derivative in time
∂/∂t is transformed in the internal variables into the operator∂/∂t − c′(t)∂/∂x1 which in
dimensionless variables has the form

V0

h

(
∂

∂(tV0/h)
− c

′(t)
V0

∂

∂(x1/h)

)
.

Herec′(t)/V0 = O(ε−1) and is much greater than unity. This indicates that derivatives in
time,∂/∂t , in the original formulation of the problem can be substituted by−c′(t)∂/∂x1 with
accuracy up toO(ε). This means that the flow in region IV may be approximately considered
as quasi-stationary at leading order asε→ 0.

In the jet region V the pressure is near the atmospheric value and so the liquid particles
move inertially. The flow in region III depends on that in the jet root; the influence of the jet
flow on the flows in others regions may be neglected.

In region VI the liquid remains at rest. This is possible if the speed of region IV prop-
agation,c′(t), is greater than the critical velocity for the liquid layer, which is(gh)1/2. The
condition is satisfied ifV0L/h� (gh)1/2. Whenh = 10 cm,L = 50 cm the inequality gives
V0� 20 cm s−1.

We shall determine both the flows and the pressure distributions in region I, III, IV, and
match them with each other and with the rest state in region VI. The first-order solution in
region II is trivial and does not provide additional matching conditions. The shape of the jet
region can be determined after the flow in region IV is found. This procedure makes it possible
to find approximately all characteristics of the liquid flow during the third stage of the body
impact onto shallow water.

It is important that simplified models, which approximately describe the liquid flows in
regions I–VI, do not require initial conditions. This makes it possible to study the peculiarities
of the flow at the third stage separately and independently on the analysis of the previous
stages.
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3. Liquid flow and pressure distribution beneath the entering body

The asymptotic analysis and physical reasonings (see previous section) indicate that the flow
in region I can be described within the framework of the shallow water theory. The flow is
governed approximately by the equations

∂u

∂t
+ u∂u

∂x
= − 1

ρ0

∂p

∂x
, (12)

∂u

∂x
+ ∂v
∂z
= 0 (| x |< L, −h < z < −s(t)), (13)

whereu = u(x, t), p = p(x, t), v = v(x, z, t). The boundary conditions (8) and (9) give

v = −s′(t) (z = −s(t), | x |< L), (14)

v = 0 (z = −h, | x |< L). (15)

Matching the pressures in regions I and III, we obtain (see also [4])

p = 0 (x = ±L). (16)

The flow is symmetrical, which gives

u = 0 (x = 0, −h < z < −s(t)). (17)

Integrating (13) with respect toz and taking (14), (15) and (17) into account, we obtain the
velocity field of the flow at leading order

u(x, t) = s′(t)x
h− s(t) . (18)

Equation (12) and the boundary condition (16) provide the pressure distribution beneath the
body (see also [4])

p(x, t) = p(0, t)
(

1− x2

L2

)
, (19)

p(0, t) = 1
2ρ0L

2

[(
s′

h− s
)2

+
(

s′

h− s
)′]

. (20)

The hydrodynamic forceF(t) on the entering body is

F(t) = 4
3Lp(0, t). (21)

In particular, ifs(t) = V0t , we obtain

p(0, t) = ρ0V
2
0 ε
−2(1− V0t/h)

−2,
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240 Alexander Korobkin

which indicates that the hydrodynamics loads grow beyond all bounds when the body ap-
proaches the bottom.

The flow in region I does not depend at leading order on peculiarities of the liquid motion in
other regions and can be determined separately. If the loads on the entering body are of major
importance, Equations (18)–(21) provide all necessary quantities. The flow outside region I is
determined at leading order by the outflow velocityu(L, t) only.

4. Inertial outflow

The flow in region III is governed by the equations

∂u

∂t
+ u∂u

∂x
= 0, (22)

∂u

∂x
+ ∂v
∂z
= 0 (L < x < c(t), −h < z < η(x, t)), (23)

the kinematic condition on the free surface (6) gives

∂η

∂t
+ u∂η

∂x
= v, (L < x < c(t), z = η(x, t)), (24)

the boundary condition on the bottom (9) provides

v = 0 (L < x < c(t), z = −h). (25)

Matching the horizontal velocities and the thicknesses of the layers in regions I and III close
to the body edge,x = L, leads to the boundary conditions

u(L, t) = s′(t)L
h− s(t) , (26)

η(L, t) = −s(t), (27)

as it follows from Equations (18) and (14). The solution of Equation (22), which satisfies the
boundary condition (26), in general case is complicated. We restrict ourselves by the case of
constant velocity of the body penetration,s(t) = V0t . In this case the solution of problem (22)
and (26) is

u(x, t) = V0(2L− x)
h− V0t

(L < x < c(t)). (28)

Equations (23)–(25), (27) and (28) lead to the equation for the free surface evolutionη(x, t)

ηt + V0(2L− x)
h− V0t

ηx = V0

h− V0t
(h+ η) (L < x < c(t), t > 0), (29)

and the boundary condition

η(L, t) = −V0t. (30)
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Figure 5. The flow pattern in the jet root region shown within the moving coordinate system.

The solution of the problem (29) and (30) is

η(x, t) = L2 h− V0t

(2L− x)2 − h. (31)

Formula (31) shows that

ηx(L, t) = 2ε(1− V0t/h).

This means that the derivativespx , ux and the slope of the liquid boundary are not continuous
atx = L. In order to match them, high order solutions in region II are required. The function
c(t) is still undetermined. In order to find it, the flow in region IV is considered.

5. Jet root

In the moving coordinate system which translates away from the body at the velocityc′(t), the
flow in region IV can be approximately considered as quasi-stationary (see Figure 5). Within
the framework of this scheme the flow in this region is similar to the flow due to the collision
of two plane jets. Parameters of the jets follow from the matching conditions of the flow in
region IV with the flows in regions III and VI: the jet of the thicknessh moves left at the
velocityc′(t) and the jet of the thicknessh+η(c, t)moves right at the velocityu(c, t)− c′(t).
As a result of the collision the splash jet with the thicknesshj is formed, the jet velocity
beingVj . The quantitieshj andVj are unknown in advance. The dynamical condition on
the free surface demands that the magnitude of the flow velocity on the free surface in the
quasi-stationary case is constant. This givesVj = c′(t) and

u(c(t), t)− c′(t) = c′(t). (32)

Equation (32) together with the initial condition

c(0) = L (33)

form the initial- value problem

dc

dt
= V0

2
· 2L− c
h− V0t

(t > 0), c(0) = L (34)
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with respect to the functionc(t). We find

c(t) = 2L− L√1− V0t/h, (35)

c′(t) = 1

2

V0L

h
(1− V0t/h)

−1/2. (36)

Equation (31) providesη(c(t), t) = 0. This implies that two plane jets of the same thicknessh

collide at the velocityc′(t) given by (36) and the splash jet moves vertically at the same veloc-
ity, Vj(t) = c′(t). The thickness of the spray jethj can be found from the mass conservation
law. We obtain thathj is equal to 2h and does not change its value with time. The pressure at
the stagnation point is given approximately by the Bernoulli’s equationpst(t) = 1

2ρ0[c′(t)]2.
In the case of the constant velocity of the body penetration, we obtain from (36)

pst(t) = 1
8ρ0V

2
0 ε
−2(1− V0t/h)

−1. (37)

In particular,

pst(t)

p(0, t)
= 1

8

(
1− V0t

h

)
.

This means that the pressure in the jet roots, which translate away from the body at the velocity
c′(t) given by (36), is comparable with the pressure beneath the entering body, but their ratio
vanishes in time. We may expect that more complicated laws of the body motion lead to
different rations between the maximum pressures in regions I and IV.

It is important to notice thatηx(c, t) = 2ε(1− V0t/h)
−1/2, thereforeηx(c, t) → ∞ and

c′(t)→∞ asV0t/h→ 1, and the approximate solutions in regions I–IV are not valid at the
end of the third stage whenh − V0t → 0. In order to describe correctly the flow up to the
moment of contact,t = h/V0, compressibility of the liquid has to be taken into account. On
the other hand, the experiments by Bukreev [2] indicate that velocity of the body penetration is
not constant, it rapidly decays as the body approaches the bottom of the liquid layer. Variation
of the body velocity owing to the interaction of the entering body with the liquid has to be
taken into account.

6. Splash jet

In the jet region the pressure is near the atmospheric value and the liquid particles move
inertially, both the vertical and horizontal components of their velocity being equal toc′(t).
Equations of liquid motion predict that within the framework of the original coordinate system
xOz the position of the jet and its velocity are given in parametric forms as

x = c′(τ)(t − τ)+ c(τ), u = c′(τ), (38)

z = c′(τ)(t − τ), v = c′(τ),
whereτ is the parameter, 06 τ 6 t . The shape of the jet is hyperbolic(

2L− x
L
√

1− V0t/h

)2

−
(

z

L
√

1− V0t/h

)2

= 1, (39)
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whereL + V0Lt/2h < x < c(t), if the entry velocity of the body is constant. Equation (39)
follows from (35), (36) and (38) and predicts that far from the jet root the splash jet is inclined
towards the body at angleπ/4 but propagates away from the body.

In order to determine the jet thickness, we introduce two functionsS(z, t) andζ(z, t)which
describe the shape of the left-hand free surface of the jet

x = S(z, t)
and the shape of its right-hand free surface

x = S(z, t)+ hζ(z, t).
The kinematic boundary condition provides

∂

∂t
S + v ∂

∂z
S = u (x = S(z, t), z > 0, t > 0), (40)

∂

∂t
(S + hζ)+ v ∂

∂z
(S + hζ) = u (x = S(z, t)+ hζ(z, t), z > 0, t > 0). (41)

Taking (38) into account, we can rewrite Equation (40) in the form

dS

dt
= u (t > 0), S(0, τ ) = c(τ), (42)

where d/dt = ∂/∂t + v∂/∂z. The solution of problem (42) is

S = c′(τ)(t − τ)+ c(τ),
whereτ = τ(z, t) is determined by the equation

z = c′(τ)(t − τ).
Equation (41) with account for (40), (5) and (11) yields at leading order asε→ 0

d

dt
(logζ ) = [vz + Sz · uz]x=S(z,t). (43)

The parametric forms of the velocity components (38) provide

vz = c′′(τ)∂τ
∂z
, uz = c′′(τ)∂τ

∂z
, Sz = c′′(τ)(t − τ)∂τ

∂z
,

c′′(τ)
∂τ

∂z
= 1

t − B(τ), B(τ) = τ + c′(τ)/c′′(τ).

By algebra

[vz + Sz · uz]x=S(z,t) = 2

t − B +
B − τ
(t − B)2 . (44)
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Matching the jet thickness in regions IV and V provides the initial condition

ζ(0, t) = 2. (45)

The solution of problem (43)–(45) is

ζ1(t, τ ) = 2
(
τ − B(τ)
t − B(τ)

)2

exp
(

t − τ
t − B(τ)

)
, (46)

whereζ(z, t) = ζ1(t, τ (z, t)). Equations (38) and (46) determine the jet thickness in paramet-
rical form.

In the cases(t) = V0t , Equation (46) provides

ζ(z, t) = 2eA2(z, t)e−A(z,t),

A(z, t) = 1+
z2

(
z2+

√
z2

2+ 1− t2
)

1− t2+ z2

(
z2+

√
z2

2 + 1− t2
) , (47)

z2 = z/L, t2 = V0t/h.

It is worth noting that the jet is inclined at angle 45◦ towards the body but moves away from
the body ast2→ 1; this follows from (39), withS(z,1) = 2L− z and the jet thickness differs
from constant,ζ(z,1) ≡ 8/e where z >0, in the jet root region only. More details on a splash
from a thin layer of water were given by Peregrine [5].

7. Pressure distribution

When the penetration velocity is constant the pressurepst(t) in the jet root is smaller than the
pressure at the centre point of the bodyp(0, t). The experiments by Bukreev [2] revealed that
the entry velocity drops essentially owing to the interaction of the body with the liquid and
vanishes as the body approaches the bottom. It is expected that the pressure distribution in this
case will be different from that obtained in Section 5.

In order to demonstrate this point, consider the outflow velocityû(t) = u(L, t) given as
û(t) = u0− αt, which corresponds to the body motion

s(t) = h
[
1− exp

(
−u0t

L
+ αt

2

2L

)]
.

The body velocitys′(t) is positive

s′(t) = h

L
û(t)exp

(
−u0t

L
+ αt

2

2L

)
when t < u0/α. Both the position and the velocity of the jet root are determined by the
equation dc/dt = u(c, t)/2 and can be found in parametric form as

c = (u0− ατ)(t − τ)+ L,
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c′ = 1
2(u0− ατ),

t = τ +
∫ τ

0

û2(ν)

û2(τ)
dν.

The equations provide

32(c′)3− 12(c′)2û(t) = u3
0. (48)

It is convenient to introduce the new variablek(t) such thatc′(t) = û(t) · k. Equation (48)
gives

32k3 − 12k2 =
[
u0

û(t)

]3

. (49)

The pressurep(0, t) at the centre of the body bottom is

p(0, t) = 1
2ρ0(ût (t) · L+ û2(t))

and, therefore

pst(t)

p(0, t)
= (c′)2(t)
Lût (t)+ û2(t)

= k2

1− αL/û2(t)
.

This ratio is greater than unity ifk > 1. The right-hand side of Equation (49) grows in time.
This means that the solution of this equation is greater than unity starting from the instantt∗
whenû(t∗) = u0 × 20−1/3. We obtaint∗ = u0(1− 20−1/3)/α. Therefore, the pressure at the
jet root can be higher than the pressure beneath the body.

It is of interest thatp(0, t) is negative whent > (u0−
√
αL)/α. This means that cavitation

may occur near the centre line beneath the entering body.

8. Impact by a body with elastic bottom

It was shown in the previous sections that at leading order asε → 0 the flow beneath the
entering body (region I) can be considered independently of flows in other regions. On the
other hand, the flow outside of region I is determined by the outflow velocityû(t) = u(L, t)
and by the thickness of the region at the edges,x = ±L. Details of the flow between the
entering body and the liquid bottom are not very important for peculiarities of the liquid
motion in regions III–V.

Consider the plane and unsteady problem of impact onto shallow water by a structure
with an elastic bottom. We assume that the bottom deflection is governed by the Euler beam
equation

mwtt + EJwxxxx = p(x, t) (| x |< L), (50)

wherem is the beam mass per unit length,E is the modulus of elasticity andJ is the inertia
momentum of the beam cross-section. The ends of the beam are assumed simply supported
hence

w = wxx = 0 (x = ±L). (51)
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Deformations and velocities obtained by the beam at the acoustic stages are assumed small
compared with the depth of the liquid layerh and the penetration velocityV0, respectively.
This leads to the initial conditions

w = wt = 0 (t = 0). (52)

Condition (8) has to be replaced for a flexible bottom by

v = −s′(t)+wt(x, t) (z = −s(t)+w(x, t), | x |< L). (53)

Equations (1)–(7) and (9), (10) remain valid in the case of elastic body impact.
At leading order asε → 0 we obtain, in the same manner as in Section 3, the following

two equations

ut + uux = − 1

ρ0
px, (54)

wt = V0− ∂

∂x
[u(x, t)(h − V0t +w(x, t))], (55)

which together with (50)–(52) and the boundary conditions

p(L, t) = 0, u(0, t) = 0 (56)

provide the initial value problem with respect to the horizontal velocityu(x, t), the pressure
p(x, t) and the bottom deflectionw(x, t). The problem is unsteady and nonlinear.

The orders of the independent variables and the unknown functions in region I are the same
as for an undeformable bottom. Moreover, it is reasonable to assume thatw = O(h). In this
case the relative orders of the terms in (50) are

mwtt

p(x, t)
= O

(
m

ρ0L
ε

)
,

EJwxxxx

p(x, t)
= O

(
EJ

ρ0V
2
0L

3
ε3

)
.

For a beam of constant thicknesshb we havem = hbρb, whereρb is the density of the
beam. The ratiomε/ρ0L is equal to(ρb/ρ0)(hb/L)ε and is small. The second quantity,
EJε3/(ρ0V

2
0L

3), can be large if the penetration velocityV0 is small. For example, for the
steel plate used in the drop tests carried out at MARINTEX [6] and the liquid depthh = 3 cm,
we obtainV0 < 50 cm/s. In this case the first term on the left-hand side of Equation (50) can
be neglected. Moreover, we can putw(x, t) = 0 in (55) to leading order. This means that, if
the penetration velocity is small, the flow in region I does not depend on elasticity of the body
and is determined by Equations (18)–(20). The deflection of the beamw(x, t) can be found
from (50) in the form

w(x, t) = 1

EJ
p(0, t)ψ(x),

where

ψ(x) = L4

360

(
61− 75

x2

L2
+ 15

x4

L4
− x6

L6

)
.
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Equation (55) provides the outflow velocityû(t) as

û(t) = 1

h− V0t

(
V0L−

∫ L

0
wt(x, t)dx

)
.

Substituting the approximate formula for the deflection in the last equation, we find

û(t) = V0L

h− V0t

(
1− 233

1080

ρ0V
2
0L

6

EJh3
(1− V0t/h)

−3

)
.

therefore the flexibility of the body bottom reduces the outflow velocity. The last formula is
not valid asV0t/h → 1 when problem (50)–(56) has to be considered as coupled for any
velocity of the body.

9. Three-dimensional impact problem

Impact by a cylinder with flat bottom and an arbitrary cross-section� onto shallow liquid
layer is considered within the framework of the scheme described in the previous sections. In
region I between the entering body and the bottom of the liquid layer the flow is governed at
leading order asε→ 0 by the equation

∇ · [(h− s(t))∇ϕ] = s′(t) ((x, y) ∈ �) (57)

with respect to the velocity potentialϕ(x, y, t), whereε = h/L, h is the thickness of the liquid
layer,L is the characteristic linear dimension of the region�, equationz = −s(t) describes
the position of the body,∇ϕ = (ϕx, ϕy) is the vector of the liquid velocity along the bottom.
The pressurep(x, y, t) beneath the body is given by the formula

p(x, y, t) = −ρ0(ϕt + 1
2(∇ϕ)2), (58)

which follows from the Cauchy–Lagrange integral at leading order asε → 0. In order to
match the pressure distributions in regions I and III (see Figure 4), it is required that the
pressure is zero at the boundary∂� of region I. This assumption with account for (58) leads
to the boundary condition

2ϕt + (∇ϕ)2 = 0 ((x, y) ∈ ∂�). (59)

The boundary-value problem (57) and (59) was studied by Yih [4] for both circular and
elliptic plates. It was revealed that the velocity of falling plate decays exponentially with time.
In order to determine the liquid flow outside the falling body, more information about the
outflow velocity is required.

It is clear that Equation (57) admits solutions of the form

ϕ(x, y, t) = s′(t)
h− s(t)8(x, y), (60)

where the function8(x, y) satisfies Poisson’s equation

18 = 1 ((x, y) ∈ �). (61)
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Substitution of (60) in the boundary condition (59) provides the equation

2[s′′(t)(h− s(t))(s′(t))−2+ 1]8+ (∇8)2 = 0 ((x, y) ∈ ∂�),
which can be satisfied if and only if

s′′(t)[h− s(t)] = k[s′(t)]2,
wherek is constant. The equation is solved under the initial conditionss(0) = 0, s′(0) = V0.
The solution is

s(t) = h(1− [1− V0(k + 1)t/h] 1
k+1). (62)

The entry velocitys′(t) is bounded if−1< k 6 0. In particular,s(t) = V0t if k = 0. Finally,
the boundary condition with respect to the function8(x, y) is

(∇8)2+ β8 = 0 ((x, y) ∈ ∂�), (63)

whereβ = 2(1+ k), β > 0, k is the parameter in formula (62). The pressurep(x, y, t) is
given as

p(x, y, t) = ρ0(s
′)2

2(h− s)2q(x, y), (64)

q(x, y) = −[β8+ (∇8)2].
The boundary-value problem (61), (63) is not easy to analyse for an arbitrary region�.

Consider first the axisymmetric case, where� is the circlex2 + y2 < R2. In the polar
coordinate systemr, θ , wherex = r cosθ , y = r sinθ , the function8 is independent of
θ and satisfies

∂28

∂r2
+ 1

r

∂8

∂r
= 1 (r < R), (65)

(
∂8

∂r

)2

+ β8 = 0 (r = R).

We find

8(x, y) = 1

4
r2 − 1+ β

4β
R2, (66)

q(x, y) = 1
4(1+ β)(R2− r2),

which is in agreement with the results by Yih [4]. The outflow velocity(∂ϕ/∂r)(x, y, t),
(x, y) ∈ ∂�, is independent ofθ and equal to

∂ϕ

∂r
= s′(t)R

2(h− s(t)) .
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For an elliptic cross-section of the entering cylinder,� = {x, y | x2/a2 + y2/b2 6 1},
b > a, the solution of problem (61) and (63) has the form (see [4] and [7])

8(x, y) = Ax2 + By2 −D. (67)

This function satisfies Equations (61) and (63) if the constantsA, B andD satisfy the system

(4A2 + βA)a2 = βD, (4B2 + βB)b2 = βD, A+ B = 1
2. (68)

Formula (64) indicates that the pressureq(x, y) takes its maximum valueq∗ = βD at the
centre of the region�, x = 0, y = 0. System (68) yields

A = (
√
β2 + 16q∗/a2 − β)/8, B = (

√
β2 + 16q∗/b2− β)/8, (69)

where

q∗ = 1
4a

2w−4(2+ β)2
[
2−w2− 2

√
1−w2+ β2w4/[4(2+ β)2]

]
, (70)

w =
√

1− a2/b2.

The solutions (67), (69) and (70) correspond to solution (18) of the plane problem and solution
(66) of the axisymmetric problem asb→∞ andw→ 0, respectively.

10. Conclusion

The suggested scheme of the liquid flow caused by a box-like structure penetration provides
approximate description of the process and makes it possible to predict its peculiarities. It is
worth noting that the pressure in the jet root may be higher than the pressure on the bottom of
the entering body. Description of the liquid flow outside of region I, which is just beneath the
body bottom, is given for the plane case only. Extension of the description onto the general
three-dimensional case is straightforward. The reason for that is connected with the fact that
the flow in the jet root is approximately two-dimensional.

The shallow-water approximation is very helpful because it not only relates to many prac-
tical situations but also provides ideas on peculiarities of the liquid flow under the impact in
general case. The problem discussed above was solved numerically by Protopopov [8] for
ε = 1. The inclination of the splash jet towards the body, which is mentioned in Section 6,
was detected numerically. Comparing the analytical results with those by Protopopov [8], we
conclude that the present approach provides the ’sketch’ of the real flow under the impact.

The amount of the liquid piled up during the impact is greater than the amount replaced
by the entering body. Owing to the inertia effects a part of the basin bottom around the body
will be almost dry at the end of the impact stage. Thereafter the gravity acts to restore the
elevated portion of the liquid, which will move both towards the body and away from it. The
flow towards the body hits its side wall, and the flow away from the body may form a solitary
wave. The main part of the energy of the body motion is dissipated near the body. The portion
of the body energy, which is taken away from the body with gravity waves, was estimated in
[2] as 0·024 for particular conditions of the experiments.

The blunt-body impact on shallow water was analysed in [1] for the plane case. In the three-
dimensional problem the geometry of the contact region (region I) is unknown in advance and
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has to be found together with the liquid flow. We expect that the exact solutions to shallow-
water wave equations found by Thacker [9] will be useful to analyse the impact by an elliptic
paraboloid onto shallow water.
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